Find dy/dx for (x^2)(y^3) + ln(x^y) = 5sin(6x)/x^(1/2)

To differentiate this equation we must use the implicit method, looking at the left side of the equation, to find the differential of the first term we must use the product rule, therefore the differential of x2y3 is:
2xy3 + (x23y2)(dy/dx)
For every y term that we differentiate, we must place a dy/dx behind it. For the next term we need to use a combination of the log laws and the product rule, so knowing that ln(xy) = yln(x) we can see that the differential of ln(xy) is:
(dy/dx)(ln(x)) + (y)(1/x)
To calculate the right side of the equation we must use the quotient rule, so the differential of 5sin(6x)/x1/2 is:
(30cos(6x)x1/2 - 5sin(6x)(1/2)x-1/2)/x which simplifies to: (60xcos(6x) - 5sin(6x))/2x3/2
So now we will simplify it and move like terms to either side:
(dy/dx)((x23y2) + (ln(x))) = ((60xcos(6x) - 5sin(6x))/2x3/2) - 2xy3 - y/x
So, the final answer is:
dy/dx = (((60xcos(6x) - 5sin(6x))/2x3/2) - 2xy3 - y/x)/(x23y2 + (ln(x)))

Answered by Max H. Maths tutor

3113 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

If y = 1/(x^2) + 4x, find dy/dx


A curve has the equation y=3x^3 - 7x^2+52. Find the area under the curve between x=2 and the y-axis.


Find the gradient of the exponential curve y(x)=(9e^(7x))/(12e^(2x)) at x=2/5


Find the turning point of y = x + 1 + 4/x2 and describe the nature of the turning point


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences