Find the tangent to the curve y = x^3 - 2x at the point (2, 4). Give your answer in the form ax + by + c = 0, where a, b and c are integers.

y = x3- 2xdy/dx = 3x2 -2plugging in x = 2, therefore gradient = 10using the formula to get the equation of a line y -y1=m(x - x1)substitute y1=4 and x1=2 to get the answer-10x + y + 16 = 0

KS
Answered by Kevalee S. Maths tutor

5989 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

integrate 6x^2


Represent in partial fraction form the expression x/x^2-3x+2


Why do we need the constant of integration?


f(x) = (4x + 1)/(x - 2) with x > 2. Find a value for 'x' such that f'(x) (first derivative of f(x) with respect to x) is equal to -1.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning