Find the tangent to the curve y = x^3 - 2x at the point (2, 4). Give your answer in the form ax + by + c = 0, where a, b and c are integers.

y = x3- 2xdy/dx = 3x2 -2plugging in x = 2, therefore gradient = 10using the formula to get the equation of a line y -y1=m(x - x1)substitute y1=4 and x1=2 to get the answer-10x + y + 16 = 0

Answered by Kevalee S. Maths tutor

5216 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The function f has domain (-∞, 0) and is defines as f(x) = (x^2 + 2)/(x^2 + 5) (here ^ is used to represent a power). Show that f'(x) < 0. What is the range of f?


Simultaneous Equations


What is the integral of (6x^2 + 2/x^2 + 5) with respect to x?


Express 3cos(x)+4sin(x) in the form Rsin(x+y) where you should explicitly determine R and y.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences