Find the Binomial Expansion of (1-5x)^4.

First I would set up how i was taught using Pascals Triange. As this is to the power of 4 the numbers across will be 1 4 6 4 1.Then I would multiply each number by the correct power of either (-5x) or (1). As I know that if (-5x) is to the power of 2, 1 must be to the power of 2.
This gives me (1 * (1)^4 * (-5x)^0) + (1 * (1)^3 * (-5x)^1) + (1 * (1)^2 * (-5x)^2) + (1 * (1)^1 * (-5x)^3) + (1 * (1)^0 * (-5x)^4).
Anything to the power of 0 is 1 and using this I get the answer1 - 5x + 25x^2 - 125x^3 + 625x^4

Answered by Mahomed-Umair V. Maths tutor

5683 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How can I remember trig identities?


A curve is defined by the parametric equations x = 3 - 4t, and y = 1 + 2/t. Find dy/dx in terms of t.


A spherical balloon of radius r cm has volume Vcm^3 , where V =4/3 * pi * r^3. The balloon is inflated at a constant rate of 10 cm^3 s^-1 . Find the rate of increase of r when r = 8.


Express (3x^2 - 3x - 2)/(x-1)(x-2) in partial fractions


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences