(i) Find the coordinates of the stationary point on the curve y = 3x^2 − 6/x − 2. [5] (ii) Determine whether the stationary point is a maximum point or a minimum point.

i) dy/dx = 0dy/dx = 6x + 6/x^2 6x + 6/x^2 = 06x^3 + 6 = 0x^3 + 1 = 0x^3 = -1x = -1y = 7(-1, 7)ii) d^2y/dx^2 = 6 - 12/x^3 x = -1 6-12/(-1)^3 = 18>0 therefore, minimum point

Answered by Dila Y. Maths tutor

7864 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the set of values for which: x^2 - 3x - 18 > 0


What are the necessary conditions for a random variable to have a binomial distribution?


Integrate x^2 + 2x + 5x^-1


You are given the function f(x)=x^3-x^2-7x+3, and that x=3 is a root of f(x)=0. Find the exact values of the other 2 roots. (6 marks)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences