(i) Find the coordinates of the stationary point on the curve y = 3x^2 − 6/x − 2. [5] (ii) Determine whether the stationary point is a maximum point or a minimum point.

i) dy/dx = 0dy/dx = 6x + 6/x^2 6x + 6/x^2 = 06x^3 + 6 = 0x^3 + 1 = 0x^3 = -1x = -1y = 7(-1, 7)ii) d^2y/dx^2 = 6 - 12/x^3 x = -1 6-12/(-1)^3 = 18>0 therefore, minimum point

DY
Answered by Dila Y. Maths tutor

8706 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the gradient of the curve y = x^2(ln(x)) at x = e


Find the integral of 3x-x^(3/2)


a) show that (cosx)^2=8(sinx)^2-6sinx can be written as (3sinx-1)^2=2 b)Solve (cosx)^2=8(sinx)^2-6sinx


A curve has equation y=x^2 + 2x +5. Find the coordinates of the point at which the gradient is equal to 1.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning