Solve algebraically the simultaneous equations 3x + 2y = 15 and 2x + 4y = 10

Firstly, we need to eliminate on of the terms of the equation, either the x or the y term, by combining the two equations into one equation. To do this we can add or subtract the two equations from each other to make one term disappear: For example if we times the first equation by 2 it becomes 6x + 4y = 30. We can then subtract the second equation from this new equation: 6x + 4y = 30 minus 2x + 4y = 10. This equals 4x = 20. Solve to find x, x = 20/4 = 5.We can now use this x value to find what y equals by substituting the x value into one of the equations.For example 3(5) + 2y = 15 which simplifies to 15 + 2y = 15 so y = 0.

Answered by Eleanor B. Maths tutor

3490 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

solve the following simultaneous equations 4x + 6y = 16 and x + 2y = 5


Calculate the length of side AB (opposite) in a right angled triangle, where angle C is 32 degrees and length of BC (hypotenuse) is 8cm.


Use the quadratic formula to find the solutions to x^2+2x-35=0


How do I solve a quadratic equation: x^2-5x+6=0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences