Solve algebraically the simultaneous equations 3x + 2y = 15 and 2x + 4y = 10

Firstly, we need to eliminate on of the terms of the equation, either the x or the y term, by combining the two equations into one equation. To do this we can add or subtract the two equations from each other to make one term disappear: For example if we times the first equation by 2 it becomes 6x + 4y = 30. We can then subtract the second equation from this new equation: 6x + 4y = 30 minus 2x + 4y = 10. This equals 4x = 20. Solve to find x, x = 20/4 = 5.We can now use this x value to find what y equals by substituting the x value into one of the equations.For example 3(5) + 2y = 15 which simplifies to 15 + 2y = 15 so y = 0.

Answered by Eleanor B. Maths tutor

3413 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do you complete the square for the question x^2 + 6x - 10 ?


Write (x-2)(x+4)=10 in the form ax^2 + bx + c = 0 and work out the values of a, b and c


y is inversely proportional to d^2. When d = 10, y = 4. d is directly proportional to x^2. When x = 2, d = 24. Find a formula for y in terms of x. Give your answer in its simplest form.


Expand and simplify 3(m + 4) – 2(4m + 1)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences