Solve algebraically the simultaneous equations 3x + 2y = 15 and 2x + 4y = 10

Firstly, we need to eliminate on of the terms of the equation, either the x or the y term, by combining the two equations into one equation. To do this we can add or subtract the two equations from each other to make one term disappear: For example if we times the first equation by 2 it becomes 6x + 4y = 30. We can then subtract the second equation from this new equation: 6x + 4y = 30 minus 2x + 4y = 10. This equals 4x = 20. Solve to find x, x = 20/4 = 5.We can now use this x value to find what y equals by substituting the x value into one of the equations.For example 3(5) + 2y = 15 which simplifies to 15 + 2y = 15 so y = 0.

Answered by Eleanor B. Maths tutor

3828 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How do you solve a quadratic equation? eg: x^2 + 2x - 8


y is inversely proportional to d^2 and when d = 10, y = 4. d is directly proportional to x^2 and when x = 2, d = 24. Find a formula for y in terms of x. Give your answer in its simplest form.


v^2 = u^2 + 2as u = 12 a = –3 s = 18 (a) Work out a value of v. (b) Make s the subject of v^2 = u^2 + 2as


White paint costs £2.80 per litre. Blue paint costs £3.50 per litre. White paint and blue paint are mixed in the ratio 3 : 2 Work out the cost of 18 litres of the mixture.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences