Solve algebraically the simultaneous equations 3x + 2y = 15 and 2x + 4y = 10

Firstly, we need to eliminate on of the terms of the equation, either the x or the y term, by combining the two equations into one equation. To do this we can add or subtract the two equations from each other to make one term disappear: For example if we times the first equation by 2 it becomes 6x + 4y = 30. We can then subtract the second equation from this new equation: 6x + 4y = 30 minus 2x + 4y = 10. This equals 4x = 20. Solve to find x, x = 20/4 = 5.We can now use this x value to find what y equals by substituting the x value into one of the equations.For example 3(5) + 2y = 15 which simplifies to 15 + 2y = 15 so y = 0.

EB
Answered by Eleanor B. Maths tutor

4521 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Rectangle ABCD has sides 2x+5 and x+2 with rectangle EFGH of sides x+3 and x cut out of it. The total area of shape ABCD is 5cm^2. Show that 0 = x^2 + 6x +5 [5 Marks]


Why can’t you use the quadratic formula for every quadratic?


Two shops have deals for purchasing pens: "3 for £2" and "5 for £3" . Mr. Papadopoulos wants to buy 30 pens for his class in school, which deal should he use if he wants to spend the least amount of money possible, and how much will he spend?


The perimeter of a right-angled triangle is 81 cm. The lengths of its sides are in the ratio 2 : 3 : 4. Work out the area of the triangle.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning