Solve algebraically the simultaneous equations 3x + 2y = 15 and 2x + 4y = 10

Firstly, we need to eliminate on of the terms of the equation, either the x or the y term, by combining the two equations into one equation. To do this we can add or subtract the two equations from each other to make one term disappear: For example if we times the first equation by 2 it becomes 6x + 4y = 30. We can then subtract the second equation from this new equation: 6x + 4y = 30 minus 2x + 4y = 10. This equals 4x = 20. Solve to find x, x = 20/4 = 5.We can now use this x value to find what y equals by substituting the x value into one of the equations.For example 3(5) + 2y = 15 which simplifies to 15 + 2y = 15 so y = 0.

Answered by Eleanor B. Maths tutor

3778 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The line l is a tangent to the circle x^2 + y^2 = 40 at the point A. A is the point (2,6). The line l crosses the x-axis at the point P. Work out the area of the triangle OAP.


Solve the simultaneous equations x^2+y^2=1 and x+2y=1


Make F the subject of the formula: C= 5(F-32) / 9


A particle is moving along a straight line. The fixed point O lies on this line. The displacement of the particle from O at time t seconds is s metres where s = 2t3 – 12t2 + 7t(a) Find an expression for the velocity, v m/s, of the particle at time t.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences