Find the integral of y=6/(e^x+2) using calculus.

First, use the substitution u=e^x (which implies dx=du/u) to make the integral ∫6/(u*(u+2)))du. Next seperate the fraction using partial fractions and expand to form 3∫1/u du - 3∫1/(u+2) du. Next integrate to get 3lnu - 3ln(u+2) + C. Finally, don't forget the "+ C"!

Answered by Jonathan P. Maths tutor

4394 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the exact solution to the equation: ln(3x-7) =5


Work out the equation of the normal to the curve y = x^3 + 2x^2 - 5 at the point where x = -2. [5 marks]


Integrate dy/dx = 2x/(x^2-4)


A curve has parametric equations: x=(t-1)^3 and y= 3t - 8/(t^2). Find dy/dx in terms of t. Then find the equation of the normal at the point on the curve where t=2.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences