What is the minimum initial velocity necessary for an object to leave Earth?

The problem can be easily solved using energy formulas. The only force that acts on the departing object is the gravitational force, which is conservative. Therefore the total energy is conserved on the trajectory:E=mv2/2-GmM/r=ct.The energy on the surface of the planet is:E=mv2i/2-GmM/R where vi is the initial velocity and R is the radius of Earth.At infinity(where the objects eventually gets since it leaves Earth):E=mv2f/2 where vf is the final velocity, which will be set to 0 in order to minimise the initial velocity.Equating the energies of the two positions we get:mv2i/2-GmM/R=0vi=(2GM/R)1/2 After introducing the values for the gravitational constant, mass and radius of Earth we get the final velocity:vi=11.2 km/s

LS
Answered by Leontica S. Physics tutor

2150 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A particle that moves uniformly in a circular path is accelerating yet moving at a constant speed. Explain this statement.


Two current carrying wires are placed next to each other and anti-parallel currents are allowed to flow. Is the magnetic force between the wires attractive or repulsive?


What conditions are required for simple harmonic motion?


In one second a mass of 210 kg of air enters at A. The speed of this mass of air increases by 570 m s–1 as it passes through the engine. Calculate the force that the air exerts on the engine.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning