What is the minimum initial velocity necessary for an object to leave Earth?

The problem can be easily solved using energy formulas. The only force that acts on the departing object is the gravitational force, which is conservative. Therefore the total energy is conserved on the trajectory:E=mv2/2-GmM/r=ct.The energy on the surface of the planet is:E=mv2i/2-GmM/R where vi is the initial velocity and R is the radius of Earth.At infinity(where the objects eventually gets since it leaves Earth):E=mv2f/2 where vf is the final velocity, which will be set to 0 in order to minimise the initial velocity.Equating the energies of the two positions we get:mv2i/2-GmM/R=0vi=(2GM/R)1/2 After introducing the values for the gravitational constant, mass and radius of Earth we get the final velocity:vi=11.2 km/s

LS
Answered by Leontica S. Physics tutor

2176 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

There is a point between the Moon and the Earth where the gravitational attractions are equal and opposite. How much further is this point from the Earth than the Moon


Why do capacitors dis/charge suddenly and then slow down?


What is the difference between plastic and elastic collision?


How does the angle of an inclined plane relate to its efficiency, given the coefficient of friction between a body and the plane?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning