What is the minimum initial velocity necessary for an object to leave Earth?

The problem can be easily solved using energy formulas. The only force that acts on the departing object is the gravitational force, which is conservative. Therefore the total energy is conserved on the trajectory:E=mv2/2-GmM/r=ct.The energy on the surface of the planet is:E=mv2i/2-GmM/R where vi is the initial velocity and R is the radius of Earth.At infinity(where the objects eventually gets since it leaves Earth):E=mv2f/2 where vf is the final velocity, which will be set to 0 in order to minimise the initial velocity.Equating the energies of the two positions we get:mv2i/2-GmM/R=0vi=(2GM/R)1/2 After introducing the values for the gravitational constant, mass and radius of Earth we get the final velocity:vi=11.2 km/s

LS
Answered by Leontica S. Physics tutor

2226 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

A light wave has a wavelength of 420nm, calculate the energy of this wave in joules.


Use the kinetic theory of gases to explain why the pressure inside a container increases when the temperature of the air inside it rises. Assume that the volume of the container remains constant.


What's the difference between a bayron and a meson?


Sphere A (mass m), moving with speed 3v, collides with sphere B (mass 2m) which is moving in the opposite direction with speed v. The two spheres then combine, calculate the resulting velocity of the combined spheres.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning