Write down the vector equation of the line l through the point (1,-1,2) and parallel to the vector 2i + 4k

Firstly, you need to see what is being asked to do. You need to find a vector equation of a line.Remember that the vector equation of a line is represented as r = a + λb.r is any point on the line, a is a specific point on the line and b is the direction vector of the line.Next, you need to look at the information provided in the question. You have been told that the line 'l' passes through a specific point (1,-1,2). This will be a.You have also been told that the line 'l' will be 'parallel' to the vector (2i + 4k). Therefore, the direction vector of the line 'l' will also be 2i + 4k. Now you have all your information, it can be filled into the equation. l: r = (i -j + 2k) + λ(2i + 4k)You have now finished the question.

CM
Answered by Clare M. Maths tutor

4162 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has equation y = f(x) where f(x) = (4x + 1) / (x - 2) and x>2. Given that P is a point on C such that f'(x) = -1.


Calculate the volume obtained when rotating the curve y=x^2 360 degrees around the x axis for 0<x<2


The first term of an arithmetic series is a and the common difference is d. The 12th term is 66.5 and the 19th term is 98. Write down two equations in a and d then solve these simultaneous equations to find a and d.


Integrate sinx*ln(cosx) with respect to x.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning