Write down the vector equation of the line l through the point (1,-1,2) and parallel to the vector 2i + 4k

Firstly, you need to see what is being asked to do. You need to find a vector equation of a line.Remember that the vector equation of a line is represented as r = a + λb.r is any point on the line, a is a specific point on the line and b is the direction vector of the line.Next, you need to look at the information provided in the question. You have been told that the line 'l' passes through a specific point (1,-1,2). This will be a.You have also been told that the line 'l' will be 'parallel' to the vector (2i + 4k). Therefore, the direction vector of the line 'l' will also be 2i + 4k. Now you have all your information, it can be filled into the equation. l: r = (i -j + 2k) + λ(2i + 4k)You have now finished the question.

Answered by Clare M. Maths tutor

3329 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

differentiate: y=[xcos(x^3)]/[(x^4 + 1)^3] with respect to x


Where does the quadratic formulae come from?


ln(2x^2 + 9x – 5) = 1 + ln(x^2 + 2x – 15). Express x in terms of e


Find the stationary point of the curve y=3x^2-2x+2 and state the nature of this stationary point.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences