A curve has equation y = 20x - x^2 - 2x^3 . The curve has a stationary point at the point M where x = −2. Find the x- coordinate of the other stationary point of the curve

A stationary point on a curve is when the differential of the equation of the curve = 0. In other words when dy/dx = 0Take the equation in the question: y = 20x - x2 - 2x3A simple rule to find the differential of the curve is to multiply that power by the value and drop that power by one. e.g. the differential of 2x3: dy/dx = 6x2.Therefore, dy/dx = 20 - 2x - 6x2.As the stationary point is when dy/dx = 0. Therefore, 20 - 2x - 6x2 = 0.factorise this quadratic. (x + 2 )(-6x + 10) = 0Therefore, the other stationary point is x = 10/6 which can be simplified to x = 5/3

HJ
Answered by Henry J. Maths tutor

3598 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How many solutions are there of the equation a+b+c=12, where a,b,c are non-negative integers?


The mass of a substance is increasing exponentially. Initially its mass is 37.5g, 5 months later its mass is 52g. What is its mass 9 months after the initial value to 2 d.p?


How can you integrate the function (5x - 1)/(x^(3)-x)?


(19x - 2)/((5 - x)(1 + 6x)) can be expressed as A/(5-x) + B/(1+6x) where A and B are integers. Find A and B


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences