Show that (x + 1)(x + 2)(x + 3) can be written in the form ax3 + bx2 + cx + d where a, b, c and d are positive integers.

lets expand the first two brackets first, so x * x gives x2, x * 2 gives 2x, x * 1 gives x and 1 * 2 = 2. 2x and x are both in terms of x so we add these together to get 3x, giving us the quadratic (x2 + 3x + 2). now we expand this bracket with (x +3). x2 * x = x3x2 * 3 = 3x2 3x * x = 3x2 3x * 3 = 9x 2 * x = 2x 2 * 3 = 6 then when we add all the like terms together we get x3+ 6x2+ 11x + 6 so a=1, b=6, c=11 and d= 6

AC
Answered by Annunzia C. Maths tutor

27744 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations 5x+y=21 and x-2y=9


In an office there are twice as many females as males. 1/4 of the females wear glasses. 3/8 of the males wear glasses. 84 people in the office wear glasses. Work out the number of people in the office.


Solve 5x - 2= 3x + 7


What is a major use of completing the square?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning