A curve has equation y = 20x −x2 −2x3 . (A) Find the x-coordinates of the stationary points of the curve.

Firstly, differentiate the equation to find dy/dx.
dy/dx = 20 - 2x - 6x2
As dy/dx represents the gradient, we know that for a stationary point the gradient must be zero, hence for the stationary points, we set dy/dx = 0.
dy/dx = 20 - 2x - 6x2 = 0
Now, we have a quadratic equation, which we can now put into brackets to find our solutions.
dy/dx = 0 = 6x2 - 2x +20 = (x+2)(6x-10)
From these brackets, we know if one set were to be zero, dy/dx would be zero and we will find our x coordinates for our stationary points.
If (x+2) = 0, then x=-2
Or, if (6x-10) = 0, then x=10/6 = 5/3 simplified

BW
Answered by Bradley W. Maths tutor

6015 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Given two coordinate points (a1,b1) and (a2,b2), how do I find the equation of the straight line between them?


Find dy/dx when y = (3x - 1)^10


A smooth 4g marble is held at rest on a smooth plane which is fixed at 30 degrees to a horizontal table. The marble is released from rest - what speed is the marble travelling at 5 seconds after being released? Let g = 9.8ms^2


If y=2x+4x^3+3x^4 and z=(1+x)^2, find dy/dx and dz/dx.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning