A curve has equation y = 20x −x2 −2x3 . (A) Find the x-coordinates of the stationary points of the curve.

Firstly, differentiate the equation to find dy/dx.
dy/dx = 20 - 2x - 6x2
As dy/dx represents the gradient, we know that for a stationary point the gradient must be zero, hence for the stationary points, we set dy/dx = 0.
dy/dx = 20 - 2x - 6x2 = 0
Now, we have a quadratic equation, which we can now put into brackets to find our solutions.
dy/dx = 0 = 6x2 - 2x +20 = (x+2)(6x-10)
From these brackets, we know if one set were to be zero, dy/dx would be zero and we will find our x coordinates for our stationary points.
If (x+2) = 0, then x=-2
Or, if (6x-10) = 0, then x=10/6 = 5/3 simplified

BW
Answered by Bradley W. Maths tutor

5761 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

John wants to separate a rectangular part of his garden for his puppy. He has material for a 100-meter long fence and he plans to use one side of his house as a barrier. How should John select the sizes of his fence in order to gain the biggest territory?


What is differentiation and what can it tell me?


A curve has parametric equations x=2t, y=t^2. Find the Cartesian equation of the curve.


Given that y=(4x-3)^3 x sin2x find dy/dx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning