A curve has equation y = 20x −x2 −2x3 . (A) Find the x-coordinates of the stationary points of the curve.

Firstly, differentiate the equation to find dy/dx.
dy/dx = 20 - 2x - 6x2
As dy/dx represents the gradient, we know that for a stationary point the gradient must be zero, hence for the stationary points, we set dy/dx = 0.
dy/dx = 20 - 2x - 6x2 = 0
Now, we have a quadratic equation, which we can now put into brackets to find our solutions.
dy/dx = 0 = 6x2 - 2x +20 = (x+2)(6x-10)
From these brackets, we know if one set were to be zero, dy/dx would be zero and we will find our x coordinates for our stationary points.
If (x+2) = 0, then x=-2
Or, if (6x-10) = 0, then x=10/6 = 5/3 simplified

Answered by Bradley W. Maths tutor

5244 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the intersection coordinates of both axis with the function: f(x)=x^2-3x+4/3


The equation of curve C is 3x^2 + xy + y^2 - 4x - 6y + 7 = 0. Use implicit differentiation to find dy/dx in terms of x and y.


There are two lines in the x-y plane. The points A(-2,5) and B(3,2) lie on line one (L1), C(-1,-2) and D(4,1) lie on line two (L2). Find whether the two lines intersect and the coordinates of the intersection if they do.


Solve the simultaneous equations: x+y =2; x^2 + 2y = 12


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences