What is the limiting reagent and thus the mass of product for the reaction: P4O10 + 6H2O --> 4H3PO4 if 5.00 g of P4O10 react with 1.50 g of water?

1)   Determine the moles of each reactant and thus the limiting reagent:# moles= mass (g)/Mr . Mr of P4O10 = (4 x 30.97) + (10 x 16.00) = 283.88 g mol-1. Moles of P4O10 = 5.00/283.88 = 1.76 x 10-2 mol. Mr of H2O = (2 x 1.01) + 16.00 = 18.02 g mol-1. Moles of H2O = 1.50/18.02 = 8.32 x 10-2 mol. Since there are fewer moles of P4O10, it is the limiting reagent in the reaction. H2O is in excess. 2)   Determine the theoretical mass of product according to the limiting reagent: 1 mole of P4O10 reacts to form 4 moles of H3PO4 product. Assuming that all the P4O10 reacts, then 4 x 1.76 x 10-2 = 7.04 x 10-2 mol of H3PO4 product are formed. Rearranging the equation in part 1: Mass (g) = # moles x Mr , Mr of H3PO4 = (3 x 1.01) + 30.97 + (4 x 16.00) = 98.00 g mol-1 . Therefore, mass of H3PO4 = 7.04 x 10-2 mol x 98.00 g mol-1 = 6.90 g

EW
Answered by Elise W. Chemistry tutor

8149 Views

See similar Chemistry IB tutors

Related Chemistry IB answers

All answers ▸

2HCl (aq)+CaCO3 (s)->H20(l)+CaCl2(aq)+CO2(g). If using 40cm^3 of 2.5mol.dm^-3 Hcl and 5.67g of CaCO3, determine the limiting reagent and how much CO2(g) could be theoretically produced by this reaction.


What factors affect the rate of a reaction?


Why do transition d-metal complexes show color?


What does the Maxwell-Boltzmann distribution illustrate?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning