Differentiate the equation y^2 + y = x^3 + 2x

To answer this question you must use implicit differentiation due to there being both x and y terms. Consequently you must differentiate each term individually as you would usually (by multiplying by the power and taking one off the power) but for the y terms due to chain rule the differentiated term must also be multiplied by dy/dx. Consequently the answer becomes: 2y*dy/dx + dy/dx = 3x^2 + 2. The equation must then be rearranged to make dy/dx the subject dy/dx (2y + 1) = 3x^2 + 2 Therefore dy/dx = (3x^2 + 2)/(2y+1)

DW
Answered by Daisy W. Maths tutor

3510 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Factorise completely x-4x^3


A curve has equations: x=2sin(t) and y=1-cos(2t). Find dy/dx at the point where t=pi/6


Why is the derivative of a function its gradient?


Please Simplify: (2x^2+3x/(2x+3)(x-2))-(6/x^2-x-2))


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning