Describe the changes in equilibrium of ethanol production from ethene and water (enthalpy of reaction is ∆H = - 46 kJ/mol) when: (a) a high pressure is applied; (b) ethanol concentration is increased; (c) temperature is increased; (d) a catalyst is used.

The equation for the reaction (would be given for this type of question but I ran out of space): C2H4 (g) + H2O (g) ⇌ C2H5OH (g) ∆H = - 46 kJ/molQuestion is based on Le Chatelier's principle: if a system in dynamic equilibrium is exposed to a change, processes will occur to oppose that change.Answers: (a) High pressure applied: the equilibrium will shift to the direction where less gas molecules are produced - to the right. That is because we have 2 mol of gases (ethene and water) on the left and only 1 mol on the right. (b) Ethanol concentration increased: the equilibrium will shift to the left, so that production of ethanol is reduced. (c) Temperature increased: the reaction that occurs left to right is exothermic (negative ∆H) - heat is released. Hence the equilibrium will shift in the opposite direction, as the reaction that occurs right to left is then endothermic (absorbs heat) and therefore will oppose the increase in temperature, so the equilibrium will shift to the left. (d) Catalyst used: no change in the position of equilibrium! (common trick question)

Answered by Aiste A. Chemistry tutor

6533 Views

See similar Chemistry A Level tutors

Related Chemistry A Level answers

All answers ▸

A) What assumptions are made about ideal gases. B) if 14g of an ideal gas is added to a 4 dm3 container at 210Kpa pressure and a temperature of 40oc how many moles were added and suggest the identity of the gas.


What is a dynamic equilibrium?


Sort the following compounds in order of increasing boiling point and explain your reasoning: hydrogen, hydrogen fluoride and hydrogen bromide


Draw an Alkane with the molecular formula C4H8 as well as a possible functional group isomer and state a chemical test you can use to differentiate between the two.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences