The tangent to a point P (p, pi/2) on the curve x=(4y-sin2y)^2 hits the y axis at point A, find the coordinates of this point.

p=4pi2 differentiating with respect to y we have dx/dy = 2(4y-sin2y)(4-2cos2y) substituting in the value of y =pi/2 we have dx/dy = 24pi, which means dy/dx =1/pi24using (y-y_1)=m(x-x_1) we have y-pi/2=1/24pi(x-4pi2) since we know this curve intersects the y axis this means x=0, if we substitute this in y=pi/3

GN
Answered by George N. Maths tutor

3725 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has parametric equations: x=(t-1)^3 and y= 3t - 8/(t^2). Find dy/dx in terms of t. Then find the equation of the normal at the point on the curve where t=2.


(GCSE) A rectangle has the following characteristics: its length is (2x + 5), its width is (3x - 2). The perimeter of the rectangle is 46 cm. What is the value of x?


How would I differentiate y=2(e^x)sin(5x) ?


Integrate lnx


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning