The tangent to a point P (p, pi/2) on the curve x=(4y-sin2y)^2 hits the y axis at point A, find the coordinates of this point.

p=4pi2 differentiating with respect to y we have dx/dy = 2(4y-sin2y)(4-2cos2y) substituting in the value of y =pi/2 we have dx/dy = 24pi, which means dy/dx =1/pi24using (y-y_1)=m(x-x_1) we have y-pi/2=1/24pi(x-4pi2) since we know this curve intersects the y axis this means x=0, if we substitute this in y=pi/3

Answered by George N. Maths tutor

3259 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the first derivative of 2x^3+5x^2+4x+1 (with respect to x)


The points P (2,3.6) and Q(2.2,2.4) lie on the curve y=f(x) . Use P and Q to estimate the gradient of the curve at the point where x=2 .


A factory produces cartons each box has height h and base dimensions 2x, x and surface area A. Given that the capacity of a carton has to be 1030cm^3, (a) Using calculus find the value of x for which A is a minimum. (b) Calculate the minimum value of A.


Find the exact solution, in its simplest form, to the equation ln(4y + 7) = 3 + ln(2 – y) (Core Maths 3 Style Question)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences