The tangent to a point P (p, pi/2) on the curve x=(4y-sin2y)^2 hits the y axis at point A, find the coordinates of this point.

p=4pi2 differentiating with respect to y we have dx/dy = 2(4y-sin2y)(4-2cos2y) substituting in the value of y =pi/2 we have dx/dy = 24pi, which means dy/dx =1/pi24using (y-y_1)=m(x-x_1) we have y-pi/2=1/24pi(x-4pi2) since we know this curve intersects the y axis this means x=0, if we substitute this in y=pi/3

Answered by George N. Maths tutor

3007 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Represent in partial fraction form the expression x/x^2-3x+2


differentiate 3x^56


By using the substitution x = tan(u), find the integral of [1 / (x^2+1) dx] between the limits 1 and 0


Using the addition formula for sin(x+y), find sin(3x) in terms of sin(x) and hence show that sin(10) is a root of the equation 8x^3 - 6x + 1


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences