How would you work out the equation of the normal at a point (2,5) given the equation of a line?

You are given the equation of a line in the form of y=mx+c. From this, you know that 'm' represents the gradient, which can also be represented as dy/dx. We now need to work out the gradient of the normal line. Using the equation M1 multiplied by M2 = -1, if M1 = 2, then M2 = -1/2. Now we have the gradient of the normal line, and as we are given the coordinates of the point of intersection, we can now use the equation y-y1=m(x-x1) where y1 represents the y-coordinate and x1 represents the x-coordinate to deduce the equation of the normal. If asked, we can also put it in the form y=mx+c.

RC
Answered by Rohil C. Maths tutor

3679 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A triangle has sides A, B and C. The side BC has length 20cm, the angle ABC is 50 deg and angle BAC is 68 deg. a) Show that the length of AC is 16.5cm, correct to three significant figures. b) The midpoint of BC is M, hence find the length of AM


Given that the curve y = 3x^2 + 6x^1/3 + (2x^3)/3x^1, find an expression for the gradient of the curve.


Differentiaate the folowing equation with respect to x: y=4x^3-3x^2+9x+2


Consider f(x)=a/(x-1)^2-1. For which a>1 is the triangle formed by (0,0) and the intersections of f(x) with the positive x- and y-axis isosceles?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning