Answers>Maths>IB>Article

H(x)=(x^3)*(e^x) what is H'(x)

Using the product rule H(X) = f(x)*g(x) and H'(X) = f'(x)*g(x) + f(x)*g'(x) Where, in this case f(x) = x3 and g(x) = ex We can easily determine the derivative of the above function.f'(x) = 3x2 and g'(x) = ex.We now have all the components required to formulate the final answer. H'(x) = ex*3x2 + ex*x3Which can finally be simplified to: H'(x) = exx2 (3+x)

AF
Answered by Antonio F. Maths tutor

1597 Views

See similar Maths IB tutors

Related Maths IB answers

All answers ▸

A geometric sequence has all its terms positive. The first term is 7 and the third term is 28.


Differentiate x^3 + y^4 = 34 using implicit differentiation


Given that w=x * e^-w use implicit differentiation to show that dw/dx=1/(e^w + x)


Factorise z^3+1 into a linear and quadratic factor. Let y=(1+i√3)/2. Show that y is a cube root of -1. Show that y^2=y-1. Find the value of (1-y)^6.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning