Explain the chain rule of differentiation

The chain rule can be used to find more complex derivatives.For example, in the case of: y = (5x + 2)5To find the derivative in the ordinary fashion, one would need to expand the brackets to:y=3125x5+6250x4+5000x3+2000x2+400x+32If you persevere to this point the risk of human error is huge, so clearly an easier method is needed.Enter the chain rule:dy/dx = dy/du * du/dxOne sets u = 5x + 2Now y = u5 and u = 5x + 2Differentiate y wrt u:dy/du = 5u4Differentiate u wrt x:du/dx = 5 Substitute u into dy/dudy/du = 5(5x+2)4Recall that dy/dx = dy/du * du/dx:dy/dx = 5 * 5(5x+2)4dy/dx = 25(5x+2)4The chain rule can be expanded with as many terms as possible, and this is useful when considering real life rates of change:dy/dx = dy/du1 * du1/du2 * du2/du3 * ... * dun-1/dun * dun/dx

Answered by Toby H. Maths tutor

3710 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate(1+x)/((1-x^2)(2x+1)) with respect to x.


What is the centre and radius of the circle with the equation x(x-2)+y(y+6)+4=0 ?


Given that y = 2^x, express 4^x in terms of y.


What is the magnitude and direction of the resultant force of 3N horizontal and 5N vertical?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences