Show that the following 2 lines are parallel: l1: 3y=15x+17 l2: 7y+5=35x

Both of these lines are straight lines since they only have x and y to powers of 1; and constants. Straight lines can be defined if two parameters are known, the gradient and the y-intercept. For two lines to be parallel their gradients must be the same; hence to answer this question we must find the gradients of both lines and show they are equal. The easiest way to find the gradient of a straight line is to arrange the equation of the line in the form y=mx+c, and m is the gradient.Starting with l1, to get the desired form we divide both sides of the equation by 3, giving y=5x+(17/3). Hence the gradient is 5.For l2, first we must take away 5 from both sides of the equation to give 7y=35x-5; and then divide both sides by 7 to give y=5x-(5/7). Hence the gradient is 5.Since both lines have a gradient of 5 they are parallel.

TD
Answered by Tutor121905 D. Maths tutor

5346 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

John ran a race at his school. The course was measured at 450m correct to 2sf and his time was given at 62 econds to the nearest second. Calculate the difference between his maximum and minimum possible average speed. Round you answer to 3sf.


Use factorisation to simplify the following expression (x^2-9)/(x^2-4x+3)


Solve x^2-x-12=0


How to solve rates of change questions?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning