Show that the following 2 lines are parallel: l1: 3y=15x+17 l2: 7y+5=35x

Both of these lines are straight lines since they only have x and y to powers of 1; and constants. Straight lines can be defined if two parameters are known, the gradient and the y-intercept. For two lines to be parallel their gradients must be the same; hence to answer this question we must find the gradients of both lines and show they are equal. The easiest way to find the gradient of a straight line is to arrange the equation of the line in the form y=mx+c, and m is the gradient.Starting with l1, to get the desired form we divide both sides of the equation by 3, giving y=5x+(17/3). Hence the gradient is 5.For l2, first we must take away 5 from both sides of the equation to give 7y=35x-5; and then divide both sides by 7 to give y=5x-(5/7). Hence the gradient is 5.Since both lines have a gradient of 5 they are parallel.

Answered by Tutor121905 D. Maths tutor

4648 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

A is the point with coordinates (5, 9) B is the point with coordinates (d, 15) The gradient of the line AB is 3 Work out the value of d.


(a)Show that the lines y=3x+7 and 2y–6x=8 are parallel. [3 marks] (b) Is the point (–5, –6) above, below or on the line y = 3x + 7 ? Do not use a graphical method. [2 marks] [Total 5 marks]


Let f(x) = x^2 - 1. A vertical translation of 3 and a horizontal translation of -2 is applied. Write the new function g(x) in the form g(x) = ax^2 + bx + c


the first four terms in a sequence are 2, 6, 10, 14. what is the nth term? and what is the sum to n terms of the sequence?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences