Differentiate arctan(x) with respect to x

We can set arctan(x) = y. Remember that arctan(x) is the inverse of tan(x), so we can take the tangent of both sides to give: tan(arctan(x)) = x = tan(y). Tan(x) has the standard derivative of sec^2(x) (which you can derive from the fact that tan(x) = sin(x)/cos(x) and use the quotient rule to differentiate from there), so we can now differentiate both sides with respect to y: x = tan(y), so dx/dy = sec^2(y). Don't be put off by the fact that we are differentiating with respect to y! The same rules apply, we have only changed the "name" of our variable. Using the identity tan^2(y) + 1 = sec^2(y), we can rewrite our expression as dx/dy = tan^2(y) + 1.But remember that we set tan(y) = x, so dx/dy = x^2 + 1. We were asked in the question to find dy/dx, not dx/dy, but that is just 1/(dx/dy) = 1/(x^2 + 1). Hence, the derivative of arctan(x) = 1/(x^2 + 1)

SE
Answered by Sofya E. Further Mathematics tutor

4851 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

Find the eigenvalues for the matrix (4/2/3,2/7/0,-2/1/8)


How do you plot a complex number in an Argand diagram?


using an integrating factor, find the general solution of the differential equation dy/dx +y(tanx)=tan^3(x)sec(x)


Given that k is a real number and that A = ((1+k k)(k 1-k)) find the exact values of k for which A is a singular matrix.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences