Show that the two lines are parallel: L1: 4y = 24x +12, L2: 2y + 13 = 12x

Two lines are parallel when they have the same gradient.
When the equation is written in the form: y = mx + c, m is the gradient.
We need to arrange our equations in the form y = mx + c as this is the easiest way to compare gradients.
L1: 4y = 24x + 12
To get the desired form we need to divide all parts of the equation by 4 giving: y = 6x + 3
L2: 2y + 13 = 12x
Before we do anything we need to rearrange this equation and take 13 over to the other side giving: 2y = 12x - 13Now we can divide it all by 2 to give: y = 6 x - 13/2
Now that we have both equations in the required form we can compare them, as they both have a gradient of 6 we can confirm that they are parallel.

Answered by Dominique T. Maths tutor

17961 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Write 2x^2 - 16x + 6 in the form a(x + b)^2 + c where a, b and c are constants to be determined.


How do you convert fractions to decimals? For example. Convert 13/20 to a decimal.


The straight line L1 passes through the points with coordinates (4, 6) and (12, 2) The straight line L2 passes through the origin and has gradient -3. The lines L1 and L2 intersect at point P. Find the coordinates of P.


Work out ∛16 as a power of two. (AQA GCSE Higher paper 2017, Q24b)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences