Solve the following simultaneous equations: 6a + b = 16; 5a - 2b = 19

There are 2 methods in solving this set of equations, in order to find the 2 unknowns: (a) and (b). Method 1: Firstly rearrange equation 1 to make (b) the subject: b = 16 - 6a. This can then be substituted into the (b) in equation 2 so the resulting equation only has 1 unknown, (a). 5a - 2(16 - 6a) = 19. Open up the brackets: 5a - 32 + 12a = 19, and then simplify the equation: 17a = 51. This equation can then be solved to get the value of (a): a=3. (a) can then be substituted into one of the equations to find (b): b = 16 - 6(3); b = -2Method 2: The aim of this method is to make one of the unknowns, (a) or (b), in both equations equal. For example, equation 1 can be multiplied by 2 to get 12a + 2b = 32. The 2 equations can then be added to each other in order to cancel out the (b)'s and obtain an equation with only 1 unknown. This equation can then be solved to get the value of (a). (12a + 2b) + (5a - 2b) = 32 + 19; 17a = 51; a = 3. The value of (a) can then be substituted into one of the equations in order to obtain (b).

DC
Answered by Doroti C. Maths tutor

3982 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Given a circle with the equation y^2 + x^2 = 10, with a tangent that intersects at point P, where x=1, find the coordinates for the point at which the tangent meets the x axis (Q).


What is an inverse function?


Solve... 8x + 2 = 3x - 8


Show that the lines y-5x=2 and 6y-30x=36 are parallel


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning