x = 0.436363636... (recurring). Prove algebraically that x can be written as 24/55.

We need to multiply x by powers of 10 in order to get the recurring part on its own after the decimal point, and then be able to eliminate it. 10x = 4.363636... and 1000x = 436.363636...So subtracting we get 1000x - 10x = 436.363636... - 4.363636...so 990x = 432.Then dividing both sides by 990, we get x = 432/990.We now just need to simplify this fraction: x = 432/990 = 216/495 = 72/165 = 24/55.So we have x = 24/55.


Answered by Joanna P. Maths tutor

22620 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

How to derive the formula for a geometric series sum


Factorise x² + 6x + 8


y is inversely proportional to d^2 and when d = 10, y = 4. d is directly proportional to x^2 and when x = 2, d = 24. Find a formula for y in terms of x. Give your answer in its simplest form.


There are 40 pencils in a box. There are 15 pens in a packet. John gives one pencil and one pen to each person at a conference. He has no pencils or pens left. How many boxes of pencils and how many packets of pens did John buy?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences