x = 0.436363636... (recurring). Prove algebraically that x can be written as 24/55.

We need to multiply x by powers of 10 in order to get the recurring part on its own after the decimal point, and then be able to eliminate it. 10x = 4.363636... and 1000x = 436.363636...So subtracting we get 1000x - 10x = 436.363636... - 4.363636...so 990x = 432.Then dividing both sides by 990, we get x = 432/990.We now just need to simplify this fraction: x = 432/990 = 216/495 = 72/165 = 24/55.So we have x = 24/55.


Answered by Joanna P. Maths tutor

24292 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Simplify fully (3x^2-8x-3)/(2x^2-6x)


Factorise this quadratic = 8x^2 + 2x -3


How is the quadratic formula used?


Find the co-ordinates of the turning point of the line with equation y = x^2 + ax + b that passes through (1, 47) and (2, 60)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences