x = 0.436363636... (recurring). Prove algebraically that x can be written as 24/55.

We need to multiply x by powers of 10 in order to get the recurring part on its own after the decimal point, and then be able to eliminate it. 10x = 4.363636... and 1000x = 436.363636...So subtracting we get 1000x - 10x = 436.363636... - 4.363636...so 990x = 432.Then dividing both sides by 990, we get x = 432/990.We now just need to simplify this fraction: x = 432/990 = 216/495 = 72/165 = 24/55.So we have x = 24/55.


JP
Answered by Joanna P. Maths tutor

28380 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Complete the square for x^2 + x - 6.


Expand and Simplify: 16=(x-3)(x+3)


Dominik hires a satellite phone. His total hire charge is £860. For how many weeks did he hire the phone? (Total hire charge = No. of week X 90 +50)


This is a sequence: 2,4,7,11,16. Find the Nth term


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning