How would you differentiate x^x?

To start off with, we have the expression y = x^x and we want to differentiate it. A clever way to do this would be to first remember implicit differentiation and start by taking the natural logarithm of both the sides giving us ln y = ln x^x. Now we want to remember the power property of logarithms which says that ln(a)^b = b * ln(a). Hence, we can write the expression as ln y = x * ln x. Now we diffenrentiate both sides and obtain 1/y * dy/dx = 1 * ln x + x * 1/x. This gets us (dy/dx)/y = ln x + 1. Now taking y to the other side we are left with dy/dx = (ln x + 1)y which is equivalent to dy/dx = x^x(ln x + 1).

Related Further Mathematics GCSE answers

All answers ▸

A curve is mapped by the equation y = 3x^3 + ax^2 + bx, where a is a constant. The value of dy/dx at x = 2 is double that of dy/dx at x = 1. A turning point occurs when x = -1. Find the values of a and b.


The line y = 3x-4 intersects the curve y = x^2 - a, where a is an unknown constant number. Find all possible values of a.


A ladder of length 2L and mass m is placed leaning against a wall, making an angle t with the floor. The coefficient of friction between all surfaces is c. At what angle t does the ladder begin to slip?


A curve has equation y = x^2 - 7x. P is a point on the curve, and the tangent to the curve at P has gradient 1. Work out the coordinates of P.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences