Find, using calculus, the x coordinate of the turning point of the curve with equation y=e^3x cos 4

1st step: find the derivative dy/dx of the given equation2nd step: now equate the obtained derivative to 0 because this is precisely the situation in which the graph changes direction (the derivative dy/dx equated to 0 means that the gradient m at that point equals 0. which if you think of logically makes sense to be the gradient at which the direction of the graph changes)3rd step: now just find the value of x from the obtained equation. The value of x you find corresponds to the x-cordinate of the turning point

UW
Answered by Urszula W. Maths tutor

4252 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The curve C has equation 2x^2y+2x+4y-cos(pi*y)=17 A) Use implict differenciation to find dy/dx B) point P(3,0.5) lies on C, find the x coodinate of the point A at which the normal to C at P meets the x axis.


Express '6cos(2x) +sin(x)' in terms of sin(x).


How would we evaluate (1/3)^-3/2 ?


Find the value of 2∫1 (6x+1) / (6x2-7x+2) dx, expressing your answer in the form mln(2) + nln(3), where m and n are integers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning