Find, using calculus, the x coordinate of the turning point of the curve with equation y=e^3x cos 4

1st step: find the derivative dy/dx of the given equation2nd step: now equate the obtained derivative to 0 because this is precisely the situation in which the graph changes direction (the derivative dy/dx equated to 0 means that the gradient m at that point equals 0. which if you think of logically makes sense to be the gradient at which the direction of the graph changes)3rd step: now just find the value of x from the obtained equation. The value of x you find corresponds to the x-cordinate of the turning point

Answered by Urszula W. Maths tutor

3519 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Whats the Product rule for differentiation and how does it work?


Find the set of values for which x^2 - 7x - 18 >0


How many roots does the equation x^2 = x + 12 have and what are they?


Given that log_{x} (7y+1) - log_{x} (2y) =1 x>4, 0<y<1 , express y in terms of x.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences