Find, using calculus, the x coordinate of the turning point of the curve with equation y=e^3x cos 4

1st step: find the derivative dy/dx of the given equation2nd step: now equate the obtained derivative to 0 because this is precisely the situation in which the graph changes direction (the derivative dy/dx equated to 0 means that the gradient m at that point equals 0. which if you think of logically makes sense to be the gradient at which the direction of the graph changes)3rd step: now just find the value of x from the obtained equation. The value of x you find corresponds to the x-cordinate of the turning point

UW
Answered by Urszula W. Maths tutor

3818 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Find the stationary point of the function f(x) = x^2 +2x + 5


How do you integrate the term x^2?


Express 4 sin(x) – 8 cos(x) in the form R sin(x-a), where R and a are constants, R >0 and 0< a< π/2


How do I identify that the coordinate (2,3) is the maximum point of the curve f(x)?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences