How do you integrate sin^2(3x)cos^3(3x) dx?

Use the identity sin^2(y) + cos^2(y) = 1 to get the expression sin^2(3x) (1-sin^2(3x)) cos(3x) dx.Use the substitution u= sin(3x) by dividing the expression by the derivative, u’= 3cos(3x).The expression then becomes u^2 (1-u^2) (1/3) du. Now everything is in terms of u so we can expand and integrate.Expanding gives (1/3) u^2 - (1/3) u^4 du.The answer in terms of u is now (1/9) u^3 - (1/15) u^5 + C.   Don’t forget the +C!!!Finally, substitute back into x to get (1/9) sin^3(3x) - (1/15) sin^5(3x) +C.

ZG
Answered by Zachary G. Maths tutor

9307 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

dx/dt=-5x/2 t>=0 when x=60 t=0


integrate xsin(x)


Let f(x) and g(x) be two odd functions defined for all real values of x. Given that s(x)=f(x)+g(x), prove that s(x) is also an odd function.


Two particles, A and B, are moving directly towards each other on a straight line with speeds of 6 m/s and 8 m/s respectively. The mass of A is 3 kg, and the mass of B is 2 kg. They collide to form a single particle of speed "v" m/s. Find v.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning