How do you integrate sin^2(3x)cos^3(3x) dx?

Use the identity sin^2(y) + cos^2(y) = 1 to get the expression sin^2(3x) (1-sin^2(3x)) cos(3x) dx.Use the substitution u= sin(3x) by dividing the expression by the derivative, u’= 3cos(3x).The expression then becomes u^2 (1-u^2) (1/3) du. Now everything is in terms of u so we can expand and integrate.Expanding gives (1/3) u^2 - (1/3) u^4 du.The answer in terms of u is now (1/9) u^3 - (1/15) u^5 + C.   Don’t forget the +C!!!Finally, substitute back into x to get (1/9) sin^3(3x) - (1/15) sin^5(3x) +C.

Answered by Zachary G. Maths tutor

8126 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The second and fourth term of a geometric series is 100 and 225 respectively. Find the common ratio and first term of the series. Round your answer to 2 d.p if necessary


How do I know which SUVAT equation to use?


Differentiate and find the stationary point of the equation y = 7x^2 - 2x - 1.


If x is a real number, what are the solutions to the quadratic: 4*x^2- 4*x+1 = 0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences