How do you integrate sin^2(3x)cos^3(3x) dx?

Use the identity sin^2(y) + cos^2(y) = 1 to get the expression sin^2(3x) (1-sin^2(3x)) cos(3x) dx.Use the substitution u= sin(3x) by dividing the expression by the derivative, u’= 3cos(3x).The expression then becomes u^2 (1-u^2) (1/3) du. Now everything is in terms of u so we can expand and integrate.Expanding gives (1/3) u^2 - (1/3) u^4 du.The answer in terms of u is now (1/9) u^3 - (1/15) u^5 + C.   Don’t forget the +C!!!Finally, substitute back into x to get (1/9) sin^3(3x) - (1/15) sin^5(3x) +C.

Answered by Zachary G. Maths tutor

8016 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Let y = 4t/(t^2 + 5). Find dy/dt, writing your answer in it's simplest form, and find all values of t for which dy/dt = 0


The curve C has equation: 2x^2y + 2x + 4y – cos (piy) = 17. Use implicit differentiation to find dy/dx in terms of x and y.


Given that x = 4sin(2y + 6), Find dy/dx in terms of x


Example of product rule - if y=e^(3x-x^3), what are the coordinates of stationary points and what are their nature?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences