Given that α= 1+3i is a root of the equation z^3 - pz^2 + 18z - q = 0 where p and q are real, find the other roots, then p and q.

All coefficients of z are real, therefore one root must be the complex conjugate so β = 1-3i.It is known that Σαβ = 18 (the coefficient of z), so we can get an equation in the third root, γ, as follows: Σαβ = αβ+αγ+βγ = (1+3i) (1-3i) + (1+3i)γ + (1-3i)γ = 18. Rearranging this we get γ = 4.To find p we use Σα = α+β+γ = 1+3i +1-3i + 4 = -p. Rearranging this we get that p=6. To find q we use Σαβγ = αβγ = (1+3i) (1-3i) (4) = -q. Rearranging this we get that q=-40.

Related Further Mathematics A Level answers

All answers ▸

Let I(n) = integral from 1 to e of (ln(x)^n)/(x^2) dx where n is a natural number. Firstly find I(0). Show that I(n) = -(1/e) + n*I(n-1). Using this formula find I(1).


Give the general solution to (d2y/dx2) - 2dy/dx -3y = 2sinx


Determine if these two vectors are perpendicular. a=[1,4,8], b=[0,6,-3]


Using graphs, show how the Taylor expansion can be used to approximate a trigonometric function.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences