Calculate the derivative of x^x

This problem is best solved using implicit differentiation and by tackling each side of the equation individually. First write down the problem as "y = x^x". Recalling that log rules can be used to simplify exponents we take the natural log of both sides and simplify to leave "ln(y) = xln(x)". The next step is to write the derivative term with respect to x on each side to leave "d(ln(y))/dx = d(xln(x))/dx". Applying the product rule to the RHS gives "d(ln(y))/dx = ln(x)dx/dx + xd(ln(x))/dx" this easily simplifies to "d(ln(y))/dx = ln(x) + x*(1/x)" or "d(ln(y))/dx = ln(x) + 1". Multiplying the LHS by dy/dy (equal to 1) gives "d(ln(y))/dy * dy/dx = ln(x)+1" which goes to "1/y * dy/dx = ln(x) + 1". Multiplying across the y gives "dy/dx = y(ln(x) + 1)". Now we can recall that y = x^x to complete the problem. leaving "dy/dx = x^x(ln(x) + 1)".

GH
Answered by George H. Maths tutor

3887 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

What is the intergral of 6.x^2 + 2/x^2 + 5 with respect to x?


Find ∫(2x^5 -4x^-3 +5) dx


Find the first derivative of 2x^3+5x^2+4x+1 (with respect to x)


g(x) = ( x / (x+3) ) + ( 3(2x+1) / (x^2 + x - 6) ). Show that this can be simplified to: g(x) = (x+1) / (x-2).


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning