Solve the simultaneous equations 3x + y = -4 and 3x - 4y = 6

When solving simultaneous equations our goal is always to use the equations given, which each have two unknowns in them, in order to find an equation with only one unknown. In this example, we can see that both equations have 3x on the left hand side, so we can subtract equation 2 from equation 1 to eliminate the x term, giving (3x+y) - (3x-4y) = -4 -6, so 5y = -10 and hence y = -2. From here we can use either equation to find x by substituting the value -2 for y. If we use equation 1, we see that 3x + y = 3x - 2 = -4, hence 3x = -2 and so x = -2/3. For ease of mind we can also check that this agrees with equation 2: 3(-2/3) -4(-2) = -2+8 = 6. We can now be sure that our unknowns x and y satisfy both equations and are -2/3 and -2 respectively.

SE
Answered by Sofya E. Maths tutor

20914 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

The population of sheep on an island is 170. The population of the sheep is expected to increase by 3% each year, what will the population of sheep be in 5 years time? [3 marks]


Solve simultaneously 2x-y=2, 3x+2y=17 to calculate values of x and y.


Solve algebraically 6a + b = 16 and 5a - 2b = 19


If we take a number and square it, the answer is also the product of the two numbers either side of it plus one. Prove algebraically that this works for all numbers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning