Why do we have to add the +c when integrating a function

First of all it is important to know that differentiation is the opposite of integration. So if we integrate some function g(x) and get f(x), it means that when we differentiate f(x) we should get g(x). We demonstrate the importance of the +c with an example.Lets say we differentiate 3x. Our answer is 3If we differentiate 3x +3. Our answer is 3If we differentiate 3x +4. Our answer is 3So more generally, if we diferentaite 3x +c, where c is any constant, then we should get 3.Understanding that differentiation is the opposite of integration now shows that we must add the +c whenever we integrate a function. All the +c represents is that we don't know the constant that is at the end of the function.

NS
Answered by Niraj S. Maths tutor

4703 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

You are given the function f(x)=x^3-x^2-7x+3, and that x=3 is a root of f(x)=0. Find the exact values of the other 2 roots. (6 marks)


A ball is thrown vertically upwards with a speed of 24.5m/s. For how long is the ball higher than 29.4m above its initial position? Take acceleration due to gravity to be 9.8m/s^2.


Find the general solution, in degrees, of the equation 2 sin(3x+45°)= 1


Express (3+ i)(1 + 2i) as a complex number in the form a+bi where a and b are real numbers.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning