Why do we have to add the +c when integrating a function

First of all it is important to know that differentiation is the opposite of integration. So if we integrate some function g(x) and get f(x), it means that when we differentiate f(x) we should get g(x). We demonstrate the importance of the +c with an example.Lets say we differentiate 3x. Our answer is 3If we differentiate 3x +3. Our answer is 3If we differentiate 3x +4. Our answer is 3So more generally, if we diferentaite 3x +c, where c is any constant, then we should get 3.Understanding that differentiation is the opposite of integration now shows that we must add the +c whenever we integrate a function. All the +c represents is that we don't know the constant that is at the end of the function.

Answered by Niraj S. Maths tutor

3559 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Write down the vector equation of the line l through the point (1,-1,2) and parallel to the vector 2i + 4k


What is a stationary point on a curve? How do I calculate the co-ordinates of a stationary point?


How do I know which SUVAT equation to use?


The equation of a curve is x(y^2)=x^2 +1 . Using the differential, find the coordinates of the stationary point of the curve.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences