Determine the coordinates of all the stationary points of the function f(x) = (1/3)*x^3+x^2-3*x+1 and state whether they are a maximum or a minimum.

To find the answer you must first differentiate the function and set this equal to zero. This forms the quadratic equation x^2+2x-3=0 which can then be solved either by factorisation or by using the quadratic formula. This enables you to find the x-coordinates of the two stationary points which can then be substituted back into the original equation to find the y-coordinates of the stationary points. The coordinates of the stationary points are (1, -2/3) and (-3, -8).To find the nature of the stationary points you must find the second differential of the original function which is f”(x)=2x+2. Then you substitute the x-coordinates into this function and if f”(x)<0 the point is a maximum, if f”(x)>0 then the point is a minimum. Therefore, we can determine that (-3, -8) is a maximum and (1, -2/3) is a minimum.

AN
Answered by Alex N. Maths tutor

3976 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has equation y = x^3 - 3x^2 -24x + 5, find the x co-ordinates of the two stationary points of the curve and hence determine whether they are maximum or minimum points.


Use the substitution u=2+ln(t) to find the exact value of the antiderivative of 1/(t(2+ln(t))^2)dt between e and 1.


A function is defined parametrically as x = 4 sin(3t), y = 2 cos(3t). Find and simplify d^2 y/dx^2 in terms of t and y.


The quadratic equation 2x^2+ 6x+7 has roots a and b. Write down the value of a+b and the value of ab.


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning