Determine the coordinates of all the stationary points of the function f(x) = (1/3)*x^3+x^2-3*x+1 and state whether they are a maximum or a minimum.

To find the answer you must first differentiate the function and set this equal to zero. This forms the quadratic equation x^2+2x-3=0 which can then be solved either by factorisation or by using the quadratic formula. This enables you to find the x-coordinates of the two stationary points which can then be substituted back into the original equation to find the y-coordinates of the stationary points. The coordinates of the stationary points are (1, -2/3) and (-3, -8).To find the nature of the stationary points you must find the second differential of the original function which is f”(x)=2x+2. Then you substitute the x-coordinates into this function and if f”(x)<0 the point is a maximum, if f”(x)>0 then the point is a minimum. Therefore, we can determine that (-3, -8) is a maximum and (1, -2/3) is a minimum.

Answered by Alex N. Maths tutor

2895 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The line AB has equation 5x + 3y + 3 = 0 . (a) The line AB is parallel to the line with equation y = mx + 7 . Find the value of m. [2 marks] (b) The line AB intersects the line with equation 3x -2y + 17 = 0 at the point B. Find the coordinates of B.


Solve 7x – 9 = 3x + 2


A circle with center C has equation x^2 + y^2 + 8x - 12y = 12


Find the coordinates of the minimum point of the curve y = 3x^(2) + 9x + 10


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2024

Terms & Conditions|Privacy Policy
Cookie Preferences