Determine the coordinates of all the stationary points of the function f(x) = (1/3)*x^3+x^2-3*x+1 and state whether they are a maximum or a minimum.

To find the answer you must first differentiate the function and set this equal to zero. This forms the quadratic equation x^2+2x-3=0 which can then be solved either by factorisation or by using the quadratic formula. This enables you to find the x-coordinates of the two stationary points which can then be substituted back into the original equation to find the y-coordinates of the stationary points. The coordinates of the stationary points are (1, -2/3) and (-3, -8).To find the nature of the stationary points you must find the second differential of the original function which is f”(x)=2x+2. Then you substitute the x-coordinates into this function and if f”(x)<0 the point is a maximum, if f”(x)>0 then the point is a minimum. Therefore, we can determine that (-3, -8) is a maximum and (1, -2/3) is a minimum.

AN
Answered by Alex N. Maths tutor

3978 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A block of mass 5kg is on a rough slope inclined at an angle of 30 degrees to the horizontal, it is at the point of sliding down the slope. Calculate the coefficient of friction between the block and the slope.


Find the coordinates of the stationary points of the curve 3x=y+6x+3


Integrate the following function: f(x) = ln(x)


((x^2+4x)/2x)-((x^2-4x)/x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning