A car of mass m is travelling at a speed v around a circular track of radius r banked at an angle θ. (a) What is the centripetal acceleration of the car? (b) What is the normal force acting on the car? (c) If θ = 45°, r = 1 km what is the maximum speed?

(a) The formula for the centripetal acceleration of an object undergoing circular motion at a radius r and speed v is a = v^2/r so as F = ma the centripetal force is F = mv^2/r. 2 marks By drawing a diagram, labelling the forces including weight (W = mg) and the normal force (N) and knowing that these forces must add to the centripetal force (F = mv^2/r) horizontally and must cancel vertically (as the car is not accelerating vertically there can be no net force) we can first show that the weight must balance the vertical component of N. So N cosθ = mg therefore N = mg/ cosθ. 6 marks By balancing the horizontal component of the normal force N sinθ and the centripetal force F = mv^2/r we can show that N sinθ = mv^2/r as N = mg/ cosθ then mg tanθ = mv^2/r cancelling the masses on both sides of the equation we show that v^2 = g r tanθ so the maximum speed is v =  (g r tanθ) as g = 10 m/s^2, r = 1 km = 1000 m and tan45° = 1. The maximum speed v = √ (1000 × 10 × 1) = √ 10000 = 100 m/s. [6 marks]If the car went any faster than 100 m/s the horizontal component of the normal force would not be large enough to keep the car travelling in circular motion so the car would come off the track unless another force besides the normal force was present. One force that can do this is the friction between the tyres and the track which we have neglected.

Answered by Jack M. Physics tutor

5406 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

An infared wave has a wavelength of 1.5 x10^–6 m. The speed of this wave is 2.2 × 10^8 m/s. Calculate the frequency of the wave. Give your answer in standard form and to 2 significant figures.


A cylindrical rod of radius 7mm and Young’s Modulus 70 GPa has a weight F applied to it. The material experiences a strain of 0.2%. What force has been applied?


A model truck A of mass 1.2 kg is travelling due west with a speed of 0.90 m/s . A second truck B of mass 4.0 kg is travelling due east towards A with a speed of 0.35 m/s .


A body is moving at 70km/h and has a mass of 130kg, calculate its maximum kinetic energy.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences