How to find gradient of functions

To find the gradient of a function, that has constant gradient you pick any two points. You label both the x and y co-ordinates of these two points.Then you subtract the y co-ordinates of these two points. You also subtract the x co-ordinates of the two points. The you divide the y value you have calculated with the x value to find the gradient.To find the gradient of a function that does not have constant gradient, i.e. a curve. You have to use differentiation. In order to differentiate a function, you must first make sure the equation is in the form y=. Then you multiply the power of any variable by the constant in front of it. Then you reduce the power by 1 on the variable. Any constant differentiate to 0.For example, y=3^x2+ 2dy/dx= 6x dy/xy is the same concept used at GCSE it is just difference in y divided by difference in x.

SH
Answered by Sinan H. Maths tutor

2996 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

∫ x^3 *ln(2x) (from 2->1) can be written in the form pln 2 + q, where p and q are rational numbers. Find p and q.


The variable x=t^2 and the variable y=2t. What is dy/dx in terms of t?


y(x) = x^2(1-x)e^-2x , find y'(x) in the form of g(x)e^-2x where g(x) is a cubic function to be found


Solve for 0<=θ<π, the equation sin3θ-(sqrt3)cosθ=0 (C2)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences