f(x)=2x+c, g(x) = cx+5, fg(x)= 6x+d, work out the value of d

Let’s call (f(x)=2x+c) equation 1, (g(x) = cx+5) equation 2 and (fg(x)= 6x+d) equation 3.
Start by finding fg(x) in terms of c by substituting (equation 2) into (equation 1) to get (fg(x)= 2(cx +5) + c). You can then equate this with (equation 3) and expand to get 2cx +10 + c= 6x+d. We can’t know what the value of x is but we can equate the two coefficients of x, meaning 2c=6, therefore c=3. ‘d’ represents the rest of the terms on the left-hand side of the equation, meaning that d= 10+c. Since c=3, d=10+3, therefore d=13.

AM
Answered by Anna M. Maths tutor

3704 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Expand and simplify (x+5)(x+7)


Given that F(x) = X^2 - 10X + 17. Write F(x) in the form of (x+a)^2 + b = 0, where a, & b are constants.


There are 200 students in Year 10 110 are boys. There are 250 students in Year 11 140 are boys. Which year has the greater proportion of boys? (Taken from Nov 2014 AQA Unit 2)


Expand and simplify 3 (y + 4) - 2 (4y + 1)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning