if a^x= b^y = (ab)^(xy) prove that x+y =1

ln(a^x) = ln(b^y) = ln((ab)^(xy))
xln(a) = xyln(ab)
ln(a) = yln(ab) = y(ln(a) + ln(b))
y = ln(a)/(ln(a)+ln(b))
with same analysis for ln(b^y):
ln(b) = x(ln(a) + ln(b))x = ln(b)/(ln(a)+ln(b))
x + y = (ln(a) + ln(b))/(ln(a) + ln(b)) = 1

Answered by Scott C. Maths tutor

5095 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The points A and B have position vectors 2i + 6j – k and 3i + 4j + k respectively. The line l passes through both A and B. Find a vector equation for the line l.


A and B have coordinates (2,3) and (5,15), respectively. Together they form line l. Find the equation for the line r that goes through C(7,-2) and is perpendicular to l. Give the answer in the format of y=mx+b


g(x) = e^(x-1) + x - 6 Show that the equation g(x) = 0 can be written as x = ln(6 - x) + 1, where x<6


Given that f(x)= (3+x^2)(x^1/2-7x). Find f'(x) (5marks)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences