if a^x= b^y = (ab)^(xy) prove that x+y =1

ln(a^x) = ln(b^y) = ln((ab)^(xy))
xln(a) = xyln(ab)
ln(a) = yln(ab) = y(ln(a) + ln(b))
y = ln(a)/(ln(a)+ln(b))
with same analysis for ln(b^y):
ln(b) = x(ln(a) + ln(b))x = ln(b)/(ln(a)+ln(b))
x + y = (ln(a) + ln(b))/(ln(a) + ln(b)) = 1

Answered by Scott C. Maths tutor

5093 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How do you find the integral of 'x sin(2x) dx'?


The curve y = 4x^2 + a/x +5 has a stationary point. Find the value of the positive constant 'a' given that the y-coordinate of the stationary point is 32. (OCR C1 2016)


What is a Derivative?


Find the value of x in (4^5⋅x+32^2)⋅2^5=2^16⋅x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences