if a^x= b^y = (ab)^(xy) prove that x+y =1

ln(a^x) = ln(b^y) = ln((ab)^(xy))
xln(a) = xyln(ab)
ln(a) = yln(ab) = y(ln(a) + ln(b))
y = ln(a)/(ln(a)+ln(b))
with same analysis for ln(b^y):
ln(b) = x(ln(a) + ln(b))x = ln(b)/(ln(a)+ln(b))
x + y = (ln(a) + ln(b))/(ln(a) + ln(b)) = 1

Answered by Scott C. Maths tutor

4905 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

(i) Find the coordinates of the stationary point on the curve y = 3x^2 − 6/x − 2. [5] (ii) Determine whether the stationary point is a maximum point or a minimum point.


Why is |z| = 1 a circle of radius one? (FP2)


Where do the graphs of y=3x-2 and y=x^2+4x-8 meet?


What is the derivative with respect to x of the function f(x)=1+x^3+ln(x), x>0 ?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences