A curve C is defined by the equation sin3y + 3y*e^(-2x) + 2x^2 = 5, find dy/dx

d(sin3y)/dx= 3cos3y*(dy/dx)d(3ye^(-2x))/dx = -6ye^(-2x) + 3(dy/dx)e^(-2x)d(2x^2)/dx = 4xd(5)/dx = 0so3cos3y(dy/dx) - 6y*e^(-2x) + 3(dy/dx)e^(-2x) + 4x = 0rearrange the equationdy/dx = (6ye^(-2x)-4x)/(3cos3y + 3e^(-2x))

Answered by Zhaohui Z. Maths tutor

5086 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Using transformation rules and your knowledge of trigonometric functions, draw the graph y=2sin(2x)


The gradient of the curve at A is equal to the gradient of the curve at B. Given that point A has x coordinate 3, find the x coordinate of point B.


differentiate y=8x^3 - 4*x^(1/2) + (3x^2 + 2)/x


Integrate natural Log x


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences