What is a derivative and how are they used?

A derivative is a function that tells us the gradient of a curve at any point. Say you have a function like f(x)=x3+x2 and you want to know when the function is stationary, i.e. has a gradient of zero. We first take the derivative of f(x). This derivative function which comes to be: f'(x)=3x2+2x can be used to find the values of x for when the gradient is zero by setting this derivative to be equal to zero and then solving.In conclusion, a derivative function can be thought of as a gradient function, and it used to find specific values of x for which the gradient of the initial function is equal to some constant that is required, most commonly zero

Answered by Nikhil S. Maths tutor

3356 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The equation 2x^2 + 2kx + (k + 2) = 0, where k is a constant, has two distinct real roots. Show that k satisfies k^2 – 2k – 4 > 0


Find the integral between 4 and 1 of x^(3/2)-1 with respect to x


Use integration by parts to integrate the following function: x.sin(7x) dx


The equation of a line is y=3x – x^3 a) Find the coordinates of the stationary points in this curve, stating whether they are maximum or minimum points b) Find the gradient of a tangent to that curve at the point (2,4)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences