Given that a light ray enters a glass prism at angle of 50 degrees from the normal and is refracted to an angle of 30 degrees from the normal, calculate the speed of light in glass.

Answer: 1.96108ms-1.Snell's law tells us that n1sin(x1)= n2 sin(x2) where x is the angle of a light ray from the normal. Air can be assumed to have a refractive index of 1. Therefore, sin(x1) = n2 sin(x2). This means that the refractive index of glass can be found to be sin(x1)/sin(x2). The refractive index of a substance is given as the speed of light in a vacuum divided by the speed of light whilst travelling through the substance. Substituting n2 to be c/v gives c/v = sin(x1)/sin(x2). The speed of light in glass can be found by rearranging this equation so that velocity is the subject of the equation. This gives v= c sin(x2)/sin(x1). Putting in the values for the two angles gives that the speed of light in glass is equal to c* sin(30)/sin(50) which is equal to 1.96*108ms-1.

CH
Answered by Charlie H. Physics tutor

2550 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

When 0.81 m of a wire with cross-sectional area of 3.1*10^-11 m^2 is connected across a 2 V battery a current of 1.6 A flows in the wire. Find the resistivity of the material of the wire.


What is resistivity in S.I. units?


Calculate the flight time of a ball moving in parabolic motion, with initial velocity 5.0m/s at angle 30 degrees from the horizontal travelling for 23 metres.


If photons are little particles emitted by atoms, where were they before they got emitted?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences