Given that a light ray enters a glass prism at angle of 50 degrees from the normal and is refracted to an angle of 30 degrees from the normal, calculate the speed of light in glass.

Answer: 1.96108ms-1.Snell's law tells us that n1sin(x1)= n2 sin(x2) where x is the angle of a light ray from the normal. Air can be assumed to have a refractive index of 1. Therefore, sin(x1) = n2 sin(x2). This means that the refractive index of glass can be found to be sin(x1)/sin(x2). The refractive index of a substance is given as the speed of light in a vacuum divided by the speed of light whilst travelling through the substance. Substituting n2 to be c/v gives c/v = sin(x1)/sin(x2). The speed of light in glass can be found by rearranging this equation so that velocity is the subject of the equation. This gives v= c sin(x2)/sin(x1). Putting in the values for the two angles gives that the speed of light in glass is equal to c* sin(30)/sin(50) which is equal to 1.96*108ms-1.

Answered by Charlie H. Physics tutor

2491 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Explain why an object moving around a circle is said to be accelerating when it has no resultant force acting upon it.


Give a brief description of the Big Bang and describe its link to cosmic microwave background radiation.


A space probe of mass 1000kg, moving at 200m/s, explosively ejects a capsule of mass 300kg. The speed of the probe after the explosion is 250m/s. What is the velocity of the capsule?


An object orbits Earth at an altitude of 200 kilometers above the planet’s surface. What is its speed and orbital period?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences