Complete the square of 2x^2+16x-24 and hence state the minimum value of the function

2[(x^2+8x-12) [Explain basic complete the square technique]2[(x+4)^2 -16 -12]2[(x+4)^2-28]2(x+4)^2-56The term (x+4)^2 is always greater or equal to 0. So the smallest value it can have is 0. So the minimum value of the function will be -56. (Draw a sketch of the curve )

JS
Answered by Jake S. Maths tutor

3490 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

How to do the product rule for differentiation


Draw the curve for x^2-5x+6


A function is defined parametrically as x = 4 sin(3t), y = 2 cos(3t). Find and simplify d^2 y/dx^2 in terms of t and y.


Integrate sin^2(x)


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences