Complete the square of 2x^2+16x-24 and hence state the minimum value of the function

2[(x^2+8x-12) [Explain basic complete the square technique]2[(x+4)^2 -16 -12]2[(x+4)^2-28]2(x+4)^2-56The term (x+4)^2 is always greater or equal to 0. So the smallest value it can have is 0. So the minimum value of the function will be -56. (Draw a sketch of the curve )

JS
Answered by Jake S. Maths tutor

3754 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate sin7xcos3x


Given that f(x) = 1/x - sqrt(x) + 3. Find f'(1).


What is the area under the graph of (x^2)*sin(x) between 0 and pi


A curve has equation y = (12x^1/2)-x^3/2


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning