Complete the square of 2x^2+16x-24 and hence state the minimum value of the function

2[(x^2+8x-12) [Explain basic complete the square technique]2[(x+4)^2 -16 -12]2[(x+4)^2-28]2(x+4)^2-56The term (x+4)^2 is always greater or equal to 0. So the smallest value it can have is 0. So the minimum value of the function will be -56. (Draw a sketch of the curve )

Answered by Jake S. Maths tutor

3098 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

The function f(x)=x^2 -2x -24x^(1/2) has one stationary point. Find the value of x when f(x) is stationary, and hence determine the nature of this stationary point.


A particle of mass 0.8 kg moving at 4 m/s rebounds of a wall with coefficient of restitution 0.3. How much Kinetic energy is lost?


The cubic polynomial f(x) is defined by f(x) = 2x^3 -7x^2 +2x+3. Express f(x) in a fully factorised form.


Calculate the integral of (3x+3)/(2x^2+3x) between the limits 39 and 3


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences