The curve C has equation y=3x^3-11x+1/2. The point P has coordinates (1, 3) and lies on C . Find the equation of the tangent to C at P.

In order to find the gradient of a tangent to the curve C we must differentiate our equation for C.dy/dx= 9x2-11To find the gradient of a tangent at a specific point P we substitute the coordinates of P into this gradient equation.dy/dx= 9(1)2-11= -2, which tells us that the gradient of the tangent at P is-2.The general equation of a line is (y-yp)=m(x-xp).To find the equation of our tangent to C at P we must substitute the gradient and the coordinates of P into this general equation of a line.y-3= -2(x-1)y-3= -2x +2y+2x= 5, which is our equation of the tangent to C at P.

Answered by Chloe W. Maths tutor

5014 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Differentiate the equation x^2 + 2y^2 = 4x


Find the equation of the tangent to the curve y^3 - 4x^2 - 3xy + 25 = 0 at the point (2,-3).


Differentiate y=sin(x)*x^2.


Find the x co-ordinates of the stationary points of the graph with equation y = cos(x)7e^(x). Give your answer in the form x = a +/- bn where a/b are numbers to be found, and n is the set of integers.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences