Solve x^2 - 5x - 14 = 0

This is an example of a quadratic equation which we can solve on of two ways as it takes the form ax^2 + bx - c = 0a = 1, b = -5, c = -14 (1) Factorisation which we can do ourselves OR (2) Use the quadratic equation.(1) We need to find two numbers that equate to -5 (b) and multiply to give -14 (c). -7 + 2 = -5 and - 7 x 2 = -14. We therefore know the answer takes the form (x -7) (x+2) = 0. To solve equate each bracket to 0 and derive the value of x: x - 7 = 0 -> x = 7 and x + 2 = 0 -> x = -2. The solutions are x = -2 and x = 7(2) If you can't see this relationship use the quadratic equation - we would run through this in the session

Answered by Jessica B. Maths tutor

6624 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

You area told that y is proportional to x2 and that when y = 75, x = 5. a) Find a formula for y in terms of x. b) Find the value of y when x = 3. c) Find the value of x when y = 1200.


Solve the simultaneous equations 5x + y = 21 x - 3y = 9


work out the value of 4a + 2b when a = 4 and b = 3


Calculate the area of a sector which has an acute angle of 30 degrees and a radius of 5cm.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences