State and derive Kepler's third law

Kepler's third law states that the square of the period of any planet is proportional to the cube of its orbital radius.To derive it, two equations are required: F=GMm/r^2 and F = mv^2/r. These are Newtons law of gravity and the centripetal force for an object moving in circular motion respectively.By equating the two you can see that GMm/r^2 = mv^2/r. the m's and r's (mass and radius) then cancel to give: GM/r = v^2.v^2 can be shown to be equal to (2pir/T)^2, which I would show in the video and this can be substituted in to finally show that: T^2 = 4pi^2r^3/GM. I can then expand on this question by asking the student to find the period of a planet with mass M and radius r.

Answered by Samuel B. Physics tutor

2439 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Two cars start at point A. Car 1 moves in a direction at 5 m/s. After 10 seconds car 2 accelerates in the same direction as car 1 at 2m/s^2. At what time after car 1 starts moving and distance from A does car 2 pass car 1?


A body is moving at 70km/h and has a mass of 130kg, calculate its maximum kinetic energy.


The flow of water in a pipe is turbulent. Define turbulent flow.


Given that a light ray enters a glass prism at angle of 50 degrees from the normal and is refracted to an angle of 30 degrees from the normal, calculate the speed of light in glass.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences