State and derive Kepler's third law

Kepler's third law states that the square of the period of any planet is proportional to the cube of its orbital radius.To derive it, two equations are required: F=GMm/r^2 and F = mv^2/r. These are Newtons law of gravity and the centripetal force for an object moving in circular motion respectively.By equating the two you can see that GMm/r^2 = mv^2/r. the m's and r's (mass and radius) then cancel to give: GM/r = v^2.v^2 can be shown to be equal to (2pir/T)^2, which I would show in the video and this can be substituted in to finally show that: T^2 = 4pi^2r^3/GM. I can then expand on this question by asking the student to find the period of a planet with mass M and radius r.

SB
Answered by Samuel B. Physics tutor

3352 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

Why do gravitational fields around point masses obey an inverse square law?


A body of mass 2kg is travelling in a straight line along the x-axis. It collides with a second body of mass 3kg which is moving at -2m/s. The two bodies move off together at 3m/s. What is the initial velocity of the first body?


Use band theory to explain the changes in the resistance of an intrinsic semiconductor as temper changes.


What is the Schwarzschild radius of a black hole?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2025 by IXL Learning