State and derive Kepler's third law

Kepler's third law states that the square of the period of any planet is proportional to the cube of its orbital radius.To derive it, two equations are required: F=GMm/r^2 and F = mv^2/r. These are Newtons law of gravity and the centripetal force for an object moving in circular motion respectively.By equating the two you can see that GMm/r^2 = mv^2/r. the m's and r's (mass and radius) then cancel to give: GM/r = v^2.v^2 can be shown to be equal to (2pir/T)^2, which I would show in the video and this can be substituted in to finally show that: T^2 = 4pi^2r^3/GM. I can then expand on this question by asking the student to find the period of a planet with mass M and radius r.

Answered by Samuel B. Physics tutor

2324 Views

See similar Physics A Level tutors

Related Physics A Level answers

All answers ▸

The mercury atoms in a fluorescent tube are excited and then emit photons in the ultraviolet region of the electromagnetic spectrum. Explain (i) how the mercury atoms become excited and (ii) how the excited atoms emit photons.


Using Fermat's Principle explain why it makes sense for light be refracted when crossing from one medium into another that has a different refractive index.


Name the four fundamental forces.


Two trains are heading in opposite directions on the same track. Train X has a mass of 16000kg and a speed of 2.8m/s. Train Y has a mass of 12000kg and a speed of 3.1m/s. At what speed do the joined trains move off together immediately after the collison?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences