What is the equation of the straight line perpendicular to the midpoint of the straight line that passes through (0,5) and (-4,7)?

Firstly, it's important to note that the question concerns straight lines, so it will be possible to express the answer in the form y=mx+c where m is the gradient and c is the y-intercept.To start, we need to the find the gradient. We can find the gradient of the line passing through the given points by using the difference in y divided by the difference in x:(5-7)/(0--4) = -2/4 = -1/2The line perpendicular to this line will have the gradient -1/m, ie. -1/(-1/2) = -1 * (2/-1) = 2 so m in our line is 2.Now we have the gradient, we need to find the midpoint of the points so that we have the coordinates of a point through which our line passes.(((0+-4)/2),((5+7)/2)) or (-2,6)We can now plug these coordinates (x=-2, y=6) and the gradient (m=2) into the equation of a straight line, y-y1 = m(x-x1):y-6 = 2(x--2)y-6 = 2x + 4y = 2x + 10

Answered by Adam L. Maths tutor

3262 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

What is standard form?


Talil is going to make some concrete mix. He needs to mix cement, sand and gravel (1: 3:5) by weight. Talil wants to make 180 kg of concrete mix. He has 15 kg of cement, 85 kg of sand, 100 kg of gravel. Does he have enough to make the concrete?


Write down the value of 27^(-2/3)


How do I solve 7x – 8 = -3x + 2?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences