What is the equation of the straight line perpendicular to the midpoint of the straight line that passes through (0,5) and (-4,7)?

Firstly, it's important to note that the question concerns straight lines, so it will be possible to express the answer in the form y=mx+c where m is the gradient and c is the y-intercept.To start, we need to the find the gradient. We can find the gradient of the line passing through the given points by using the difference in y divided by the difference in x:(5-7)/(0--4) = -2/4 = -1/2The line perpendicular to this line will have the gradient -1/m, ie. -1/(-1/2) = -1 * (2/-1) = 2 so m in our line is 2.Now we have the gradient, we need to find the midpoint of the points so that we have the coordinates of a point through which our line passes.(((0+-4)/2),((5+7)/2)) or (-2,6)We can now plug these coordinates (x=-2, y=6) and the gradient (m=2) into the equation of a straight line, y-y1 = m(x-x1):y-6 = 2(x--2)y-6 = 2x + 4y = 2x + 10

AL
Answered by Adam L. Maths tutor

3523 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations: 2x + y = 12; x - y = 6


A piggy bank contains 200 coins, 1/4 of these are 1p coins, 100 of these are 5p coins and the rest are 10p coins, how much is the piggy bank worth in £s?


The value of a new car is £18,000. The value of the car decreases by 25% in the first year and 12% in each of the next 4 years. Work out the value of the car after 5 years?


3x² = 75 Find the value of x.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences