The height x metres, of a column of water in a fountain display satisfies the differential equation dx/dt = 8sin(2t)/(3sqrt(x)), where t is the time in seconds after the display begins. (a) Solve the differential equation, given that x(0)=0

Our DE (Differential Equation) dx/dt = 8sin(2t)/(3sqrt(x)) is separable because dx/dt can be expressed as a product of two functions of the form dx/dt = f(t)g(x) = (8sin(2t)) * (1/(3sqrt(x))).To solve the DE, we first divide both sides of our equation by our function using the x variable: 3sqrt(x) * dx/dt = 8sin(2t), we can now integrate both sides with respect to x | 3sqrt(x) *dx/dt * dt = | 8sin(2t)dt, pull out the constants 3| sqrt(x)dx = 8| sin(2t)dt, integrate both sides, without forgetting the constant of integration C, 3 * ((2/3) * x^(3/2)) = 8 * ((1/2) * -cos(2t)) + C, simplify the expression2x^(3/2) = -4cos(2t) + C, x^(3/2) = -2cos(2t) + C/2, x = (-2cos(2t) + C/2)^(2/3). Now to find the value of C/2, we plug in our initial condition x(0)=0, 0 = (-2cos(0) +C/2)^(2/3), C/2 = 2. So finally, x = (2-2cos(2t))^(2/3).

Answered by James M. Maths tutor

5586 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Take the polynomial p(x)=x^4+x^3+2x^2+4x-8, use the factor theorem to write p(x) as two linear factors and an irreducible quadratic. An irreducible quadratic is a quadratic that can not be factorised.


The Curve C has equation y = 3x^4 - 8x^3 -3. Find the first and second derivative w.r.t x and verify that y has a stationary point when x = 2. Determine the nature of this stationary point, giving a reason for your answer.


Statistics: Dave throws a ball at a bucket. The probability the ball goes into the bucket is 0.4. Dave throws the ball four times. What is the probability that he gets it in twice?


How do you determine the nature of a graphs stationary point? e.g y = 1+2x-x^2


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences