Solve these simultaneous equations. 2x + y = 18 x - y = 6

With simultaneous equations there is more than one unknown. First we’ll get one unknown on its own so we rearrange the bottom equation to get x on its own. By adding y to each side of the equation this leaves x = 6 + y. Now we can put this into the top equation to be 2(6 + y) + y =18. This can now be solved to find y. Expanding out of the brackets gives 12 + 2y + y =18. Collecting the ys gives 12 + 3y = 18. Subtract 12 from both sides leaves 3y =6 which gives y to be 2. Now we know y =2, we can put that in to one of the equations and get a value for x. The bottom equation would now read x – 2 = 6. Adding 2 to both sides now gives x = 8. Therefore the answer is x = 8, y = 2.

Answered by Lizzie S. Maths tutor

5212 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Paul buys three pens and one pencil for £11 while Sam buys four pens and two pencil for £16 - what is the price of pens and pencils?


We have two straight lines AB and CD. The coordinates of A,B and C are A(1,3), B(5,9) and C(0,8). The point D lies on the line AB and is halfway between points A and B. Is the line CD perpendicular to AB?


Simplify 2^11 x 8


Write (√(18)+10)/√(2) in the form: p + q√2 [4 marks]


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences