Solve these simultaneous equations. 2x + y = 18 x - y = 6

With simultaneous equations there is more than one unknown. First we’ll get one unknown on its own so we rearrange the bottom equation to get x on its own. By adding y to each side of the equation this leaves x = 6 + y. Now we can put this into the top equation to be 2(6 + y) + y =18. This can now be solved to find y. Expanding out of the brackets gives 12 + 2y + y =18. Collecting the ys gives 12 + 3y = 18. Subtract 12 from both sides leaves 3y =6 which gives y to be 2. Now we know y =2, we can put that in to one of the equations and get a value for x. The bottom equation would now read x – 2 = 6. Adding 2 to both sides now gives x = 8. Therefore the answer is x = 8, y = 2.

Answered by Lizzie S. Maths tutor

5148 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Factorise and solve X^2+8X+15=0


Talil is going to make some concrete mix. He needs to mix cement, sand and gravel (1: 3:5) by weight. Talil wants to make 180 kg of concrete mix. He has 15 kg of cement, 85 kg of sand, 100 kg of gravel. Does he have enough to make the concrete?


Find the inverse function of f(x)=5/(x-4)


What is the point of intersection of two lines, and how would I find it?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences