Solve these simultaneous equations. 2x + y = 18 x - y = 6

With simultaneous equations there is more than one unknown. First we’ll get one unknown on its own so we rearrange the bottom equation to get x on its own. By adding y to each side of the equation this leaves x = 6 + y. Now we can put this into the top equation to be 2(6 + y) + y =18. This can now be solved to find y. Expanding out of the brackets gives 12 + 2y + y =18. Collecting the ys gives 12 + 3y = 18. Subtract 12 from both sides leaves 3y =6 which gives y to be 2. Now we know y =2, we can put that in to one of the equations and get a value for x. The bottom equation would now read x – 2 = 6. Adding 2 to both sides now gives x = 8. Therefore the answer is x = 8, y = 2.

Answered by Lizzie S. Maths tutor

5499 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Solve the simultaneous equations: 3x + 2y =4 4x + 5y =17


solve (2x+3)/(x-4) - (2x-8)/(2x+1) = 1 leave answer in fraction form


Functions question: f(x) = 3x + 2a; g(x) = ax + 6; fg(x) = 12x + b. a and b are constants; Work out the value of b


A right-angled triangle has base 7cm and height 6cm. Find it's area.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences