Express (X²-16)/(X-1)(X+3) in partial fractions

(X2-16)/(X-1)(X+3) can be expressed as partial fractions as it is equivalent to A + B/(X-1) + C/(X+3) giving us : (X2-16)/(X-1)(X+3)≡ A + B/(X-1) +C/X+3). By multiplying both sides of this equation by (X-1) and (X+3) you get X2-16≡A(X-1)(X+3) + B(X+3) +C(X-1). This must be true for all values so to work out the variables A, B and C you start off by looking at the values of X which make the value of the bracket 0. These are X=1 and X=-3. When X=1: -15=4B, therefore B=-15/4. When X=-3: -7=-4C, therefore C=7/4. When the brackets are fully expanded the only X2 term is AX2 , therefore AX2=X2, therefore A=1.

SP
Answered by Sam P. Further Mathematics tutor

2686 Views

See similar Further Mathematics A Level tutors

Related Further Mathematics A Level answers

All answers ▸

When using the method of partial fractions how do you choose what type of numerator to use and how do you know how many partial fractions there are?


Find the determinant of matrix M. [3]


Show that G = {1, -1} is a group under multiplication.


How do I solve a simultaneous equation with more unknowns than equations?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning