Find the equation of the tangent to the curve y = x^2-2x-3 at x=-1

First we find the gradient by differentiation. Differentiating the expression for the curve gives dy/dx=2x-2. Subbing in x=-1 gives dy/dx=-4 so the gradient of the line is -4.
To find the y intercept, we use the formula for a straight line: y = mx+c. Rearranging we obtain y-mx=c. We then find y at the point x=-1 by subbing this into our original expression for the curve and get y=0. m is the gradient we have just obtained (m=-4). So we find c=0-(-4)*(-1)=-4 and so the expression for the tangent line at x=-1 is y=-4x-4

CR
Answered by Caleb R. Maths tutor

5696 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

Integrate tan(x)^2 with respect to x


For y = 7x - x^3, find the two stationary points and what type of stationary points they are.


Express √75 in the form of n√3 , where n is an integer. Using this information, solve the following equation: x√48 = √75 + 3√3 (4 marks)


What is a derivative?


We're here to help

contact us iconContact ustelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

MyTutor is part of the IXL family of brands:

© 2026 by IXL Learning