Find the equation of the tangent to the curve y = x^2-2x-3 at x=-1

First we find the gradient by differentiation. Differentiating the expression for the curve gives dy/dx=2x-2. Subbing in x=-1 gives dy/dx=-4 so the gradient of the line is -4.
To find the y intercept, we use the formula for a straight line: y = mx+c. Rearranging we obtain y-mx=c. We then find y at the point x=-1 by subbing this into our original expression for the curve and get y=0. m is the gradient we have just obtained (m=-4). So we find c=0-(-4)*(-1)=-4 and so the expression for the tangent line at x=-1 is y=-4x-4

Answered by Caleb R. Maths tutor

4847 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

A curve has the equation y=3x^3 - 7x^2+52. Find the area under the curve between x=2 and the y-axis.


Integrate Sin(2X)


Factorise the following: 5a^3b^5-4ab^2


Why do we get cos(x) when we differentiate sin(x)?


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo

© MyTutorWeb Ltd 2013–2025

Terms & Conditions|Privacy Policy
Cookie Preferences