Describe the synaptic transmission of nerve impulses.

The nerve impulse arrives at the pre-synaptic knob. Gated voltage-sensitive calcium ion channels open and calcium ions rapidly diffuse into the pre-synaptic knob. The influx of calcium ions stimulates synaptic vesicles full of the neurotransmitter acetylcholine to fuse with the pre-synaptic membrane. Acetylcholine is released into the synaptic cleft by exocytosis. Acetylcholine diffuses across the synaptic cleft. It bonds with receptor sites associated sodium ion channels, causing them to open. Sodium ions rapidly diffuse in and depolarise the post-synaptic membrane. If there is adequate depolarisation then an action impulse will be initiated in the post-synaptic neurone. Acetylcholine remaining in the synaptic cleft with be rapidly broken down by the enzyme acetylcholinesterase to prevent repeated stimulation of the post-synaptic neurone. The products (choline and ethanoic acid) diffuse back across the synaptic cleft into the pre-synaptic knob. ATP is then required to reform acetylcholine and ‘package’ it in the synaptic vesicles ready for the arrival of the next nerve impulse.

Answered by Megan G. Biology tutor

11251 Views

See similar Biology A Level tutors

Related Biology A Level answers

All answers ▸

Describe how the ultrastructure of the glomerulus and Bowman’s capsule facilitate ultrafiltration.


What are the different phases of the cell cycle?


Explain how are the lungs adapted for fast gas exchange?


Not all mutations result in a change to the amino acid sequence of the encoded polypeptide. Give an explanation.


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences