The equation of the line L1 is y = 3x – 2. The equation of the line L2 is 3y – 9x + 5 = 0. Show that these two lines are parallel.

To begin with,for every line ax+by+c=0 the gradient is m=(-a)/b.From theory, it is known that two lines are parallel only if their gradients are equal. For line 1: y=3x-2, it implies that 3x-y-2=0(we just subtract the y into the opposite part).This means that line 1 gradient is equal to m1=-(3)/(-1) => m1=3.For line 2 : 3y-9x+5=0 the gradient m2=-(-9)/3 =>m2=3 .Since m1 is equal to m2 ,then the 2 lines are parallel.

Answered by Anca I. Maths tutor

4001 Views

See similar Maths GCSE tutors

Related Maths GCSE answers

All answers ▸

Factorise 4x+6x^2


Write 𝑥²+6𝑥+11 in the form (𝑥+a)²+b.


Make F the subject of the formula: C= 5(F-32) / 9


Find the value of X when 3x^2 + 6x + 3 = 0


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences