Differentiate z = e^(3y^2+5) with respect to y. (Hint: use chain rule.)

We can find dz/dy using chain rule dz/dy=dz/du x du/dy (1) by defining u=3y^2+5 (since the exponent of e is a function of y we call this function u) and rewrite z=e^u. Then, we find dz/du=e^u (2) and du/dy=6y (3). Now we can substitute (2) and (3) into (1) to find dz/dy=e^u 6y =6y e^(3y^2+5), where in the last line we substitute u=3y^2+5. (Ensure that you give your answer in terms of y.)

Answered by Sophie H. Maths tutor

2524 Views

See similar Maths A Level tutors

Related Maths A Level answers

All answers ▸

find f'(x) of (x^2) + 3x + 2.


Differentiate y = √(1 + 3x²) with respect to x


Find an expression in terms of powers of cos(x) for cos(5x)


How to find the derivative of arctan(x)


We're here to help

contact us iconContact usWhatsapp logoMessage us on Whatsapptelephone icon+44 (0) 203 773 6020
Facebook logoInstagram logoLinkedIn logo
Cookie Preferences